# Insights into the Molecular Mechanisms of CO<sub>2</sub>-Mediated Regulation of Stomatal Movements Jingbo Zhang<sup>1</sup>, Paulo De-oliveira-Ceciliato<sup>1</sup>, Yohei Takahashi<sup>1</sup>, Sebastian Schulze<sup>1</sup>, Guillaume Dubeaux<sup>1</sup>, Felix Hauser<sup>1</sup>, Tamar Azoulay-Shemer<sup>1,4</sup>, Kadri Tõldsepp<sup>2</sup>, Hannes Kollist<sup>2</sup>, Wouter-Jan Rappel<sup>3</sup>, and Julian I. Schroeder<sup>1,\*</sup> <sup>1</sup>Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093, USA <sup>2</sup>Institute of Technology, University of Tartu, Tartu 50411, Estonia <sup>3</sup>Physics Department, University of California San Diego, La Jolla, CA 92093, USA <sup>4</sup>Present address: The Volcani Center/Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel \*Correspondence: jischroeder@ucsd.edu https://doi.org/10.1016/j.cub.2018.10.015 Plants must continually balance the influx of CO<sub>2</sub> for photosynthesis against the loss of water vapor through stomatal pores in their leaves. This balance can be achieved by controlling the aperture of the stomatal pores in response to several environmental stimuli. Elevation in atmospheric [CO<sub>2</sub>] induces stomatal closure and further impacts leaf temperatures, plant growth and water-use efficiency, and global crop productivity. Here, we review recent advances in understanding CO<sub>2</sub>-perception mechanisms and CO<sub>2</sub>-mediated signal transduction in the regulation of stomatal movements, and we explore how these mechanisms are integrated with other signaling pathways in guard cells. #### Introduction Historically, the Earth's atmospheric CO<sub>2</sub> concentrations [CO<sub>2</sub>] remained below 300 parts per million for the better part of the last 800,000 years. However, since the industrial revolution, atmospheric [CO<sub>2</sub>] has been rapidly rising, and is presently near ~410 parts per million (https://scripps.ucsd.edu/programs/ keelingcurve/). Considerably higher [CO<sub>2</sub>] is predicted to have occurred during the Cambrian period about 500 million years ago, but many of today's organisms would not survive these conditions. The present and ongoing elevation in [CO2] not only causes global warming, but also affects the physiology and development of plants. On the leaf surface of vascular plants, pores called 'stomata' mediate the exchange of gases between the atmosphere and the intracellular spaces of leaves. These pores are formed by pairs of guard cells (Figure 1) that increase and reduce their turgor pressure to control the pore aperture. In the light, photosynthesis causes reduction in the [CO<sub>2</sub>] in the intercellular space of leaves (Ci). Low Ci is a signal that causes stomatal opening, increasing influx of CO2 for further assimilation. In contrast, Ci rises rapidly in darkness, triggering closure of stomatal pores in C3 and C4 plants (Figure 1). Stomatal opening and closing optimally balance CO2 uptake for photosynthesis and water loss by regulating gas exchange (Figure 1). The ongoing rise in atmospheric [CO<sub>2</sub>] further causes an increase in the [CO<sub>2</sub>] inside leaves, resulting in a narrowing of stomatal pores globally, even during light periods. Moreover, the continued elevation in [CO<sub>2</sub>] negatively regulates stomatal development by decreasing stomatal density in the leaf epidermis of many plant species [1,2]. Reduction of stomatal apertures and density by the continued elevation in atmospheric $[CO_2]$ can reduce gas exchange and increase intrinsic water-use efficiency and plant leaf temperatures, and is predicted to affect crop yields [3,4]. It may be expected that such elevated $[CO_2]$ could increase plant biomass. However, due to the abiotic stresses linked to climate change, including drought or limited soil nutrients, some studies have shown that elevated $[{\rm CO_2}]$ does not necessarily increase crop yields [4,5]. Investigation of the mechanisms by which ${\rm CO_2}$ regulates stomatal movements and how guard cells and leaves sense and respond to changes in $[{\rm CO_2}]$ will aid in the understanding of how plants are currently processing the increasing ${\rm CO_2}$ levels. Insights from such studies can further lead to new approaches for engineering crop plants to adapt to climate change. Advances in understanding ${\rm CO_2}$ -mediated control of stomatal development have been reviewed recently [1,2] and are not covered here. Rather, in this review we focus on recent advances that are illuminating the ${\rm CO_2}$ -sensing and signal-transduction mechanisms that control stomatal movements, and we describe questions that should be addressed. Table 1 lists genes and mutants with reported functions in ${\rm CO_2}$ -mediated regulation of stomatal movements. ### ${\rm CO_2}$ Signal Perception: The Role of Guard Cells and Mesophyll Cells The existing literature indicates that both guard cells, which are located within the leaf epidermis, as well as the mesophyll cells in the inner space of leaves possess the capacity to respond to $\rm CO_2$ . These observations led to the present working hypothesis that both cell types contribute to stomatal $\rm CO_2$ responses [2,6]. We review $\rm CO_2$ -sensory mechanisms in these two cell types separately. ### Guard-Cell CO<sub>2</sub>-Response Mechanisms The existence of $[CO_2]$ -responsive sensory mechanisms within guard cells has been documented by studies using isolated guard-cell protoplasts and leaf epidermis that were shown to respond to $[CO_2]$ changes ([2] and references therein). Several genes have been identified and characterized that function in *Arabidopsis* guard cells in $CO_2$ -mediated control of stomatal movements (Table 1 and Figure 2); these encode proteins including the carbonic anhydrases $\beta CA1$ and $\beta CA4$ , the protein kinases MPK12 [7,8], MPK4 [9,10], HT1 [11], CBC1 and CBC2 [12], OST1 [13,14] and GHR1 [7,15], the S-type and R-type anion ### **Current Biology Minireview** Figure 1. Closing of stomata by elevated CO<sub>2</sub>. Plants control CO<sub>2</sub> exchange and water loss to the atmosphere in response to endogenous and environmental stimuli via stomatal pores, the size of which are controlled by surrounding guard cells via changes in turgor pressure. When the CO2 concentration within the intracellular spaces of leaves (Ci) rises, a signal transduction network is triggered in both the guard cells and the underlying mesophyll (not shown in the image) that mediates stomatal closure, resulting in reduced water evaporation from leaves. channels AtSLAC1 and AtALMT12/QUAC1 [16-19], and a MATE-type transporter RHC1 [20]. However, the guard-cell CO<sub>2</sub> sensors remain unknown. In Arabidopsis guard cells, carbonic anhydrases accelerate the catalysis of CO<sub>2</sub> molecules to bicarbonate (HCO<sub>3</sub><sup>-</sup>) and protons. Disruption of two carbonic anhydrase genes, βCA1 and $\beta CA4$ , causes slowing of the stomatal CO<sub>2</sub> response in Arabidopsis [21]. Similarly, disruption of rice and maize carbonic anhydrase genes has recently been shown to slow CO2 control of stomatal movements [22,23]. Moreover, expression of a structurally unrelated human carbonic anhydrase, aCAII, in Arabidopsis ca1ca4 double-mutant guard cells can restore the wild-type $CO_2$ response [21], suggesting that $\beta CA1$ and βCA4 mediate the stomatal CO<sub>2</sub> response via their catalytic carbonic-anhydrase activity. Combined yeast-split-ubiquitin screening, in vitro co-immunoprecipitation, bimolecular fluorescence complementation, and split-luciferase analyses in planta showed that BCA4 interacts with the plasma membrane intrinsic protein 2-1 (PIP2;1 aquaporin), and this interaction is proposed to facilitate CO<sub>2</sub> influx and catalysis in guard cells [24] (Figure 2). The Arabidopsis genome contains 6 βCAs and 13 PIP genes. An intact CO<sub>2</sub> response in pip2;1 single mutants [24] supports the notion that redundancy among PIP2s is likely in Arabidopsis. Studies have suggested that intracellular HCO<sub>3</sub><sup>-</sup> ions activate S-type anion channels [14,20], which mediate Cl<sup>-</sup> and NO<sub>3</sub><sup>-</sup> efflux across the guard-cell plasma membrane and function in stomatal closing [16,17]. Moreover, direct microinjection of HCO<sub>3</sub> enables an enhancement of SLAC1-mediated anionchannel currents in Xenopus oocytes [24], leading to the hypothesis that intracellular HCO<sub>3</sub> might directly regulate SLAC1 channel activity. Furthermore, the SLAC1 transmembrane region has been shown to function in the stomatal CO<sub>2</sub> response [25]. These studies suggest that the S-type anion channel SLAC1 might function as one of the CO<sub>2</sub>/HCO<sub>3</sub><sup>-</sup> sensors in plant guard cells. Investigation of this hypothesis by accelerated molecular dynamics modeling, testing of SLAC1 mutants in vitro, and expression of an HCO3-insensitive isoform of SLAC1 in guard cells supports the model that SLAC1 itself can function as a direct secondary HCO<sub>3</sub><sup>-</sup> sensor in CO<sub>2</sub> control of stomatal movements [26]. Based on these findings, a model of guard-cell CO<sub>2</sub> sensing can be proposed in which CO<sub>2</sub>/HCO<sub>3</sub> are sensed by two mechanisms operating in parallel: in the first, the CO<sub>2</sub>/HCO<sub>3</sub> signal is perceived, leading to activation of upstream protein kinases required for activation of S-type anion channels in guard cells (as discussed later), and in the second, intracellular HCO<sub>3</sub> ions directly enhance SLAC1 channel activity. ### Effects of Mesophyll on the CO2 Response In addition to the above-described signal transduction mechanisms within guard cells (Figure 2), several studies support a role of mesophyll cells in stomatal conductance regulation in response to [CO<sub>2</sub>] changes [6,27]. These studies showed that the stomatal response to CO2 in isolated leaf epidermis was significantly less pronounced than that observed when mesophyll tissues were placed back onto the epidermis. Experiments with placing various sized cellophane and polyethylene spacers between the epidermis and mesophyll [27] supported the existence of a mesophyll-derived signal that diffuses towards the epidermis to regulate stomatal aperture. These signals have been suggested to be of an aqueous (water soluble) nature or, alternatively, of a vapor phase (gaseous) nature [27]. Several gaseous plant molecules have been suggested to be involved in the regulation of stomatal conductance, including methyl jasmonate [28], reactive oxygen species, nitric oxide [29] and hydrogen sulfide [30]. However, water-soluble molecules have also been shown to control stomatal conductance via the apoplast, the aqueous phase of the cell wall space, including malate and sucrose [31]. Furthermore, apoplastic malate has been shown to regulate voltage-dependent properties of R-type anion channels in the guard-cell plasma membrane [32], suggesting a potential role of apoplastic malate in CO<sub>2</sub> signal transduction from mesophyll to guard cells [31,32]. Whether and which of these molecules may originate from the mesophyll in response to [CO<sub>2</sub>] changes remains unknown and requires investigation. Mutations in proteins that function in mesophyll cells for the stomatal CO<sub>2</sub> response need to be identified and will aid in understanding the underlying role of mesophyll cells in CO<sub>2</sub> regulation of stomatal movements. Furthermore, the relative contributions of guard cells and mesophyll cells to the CO2 response remain to be determined, and this will require the genetic identification of CO<sub>2</sub>-insensitive mutations in both cell types. ### CO<sub>2</sub> Signal Transduction in Guard Cells Guard-cell photosynthesis conducted by guard-cell chloroplasts does not directly control CO<sub>2</sub>-induced stomatal closing [2,33]. As described above, the upstream mediators of CO<sub>2</sub>-controlled stomatal movements involve carbonic anhydrases [24] that catalyze the conversion of CO<sub>2</sub> into protons and HCO<sub>3</sub>. Research has shown that physiological [CO<sub>2</sub>] shifts do not result in measurable pH shifts in the cytoplasm of guard cells (for example [14]). Patch-clamp analyses at defined free CO<sub>2</sub>, HCO<sub>3</sub><sup>-</sup>, and proton concentrations suggest that HCO3 acts as an intracellular signaling molecule in CO<sub>2</sub> signal transduction [14]. Recently it was demonstrated that, downstream of CO<sub>2</sub>, the mitogen activated protein kinases MPK12 and MPK4 form a node that is essential for the stomatal response to changes in [CO<sub>2</sub>] [7–9]. The importance of MPK4 for CO<sub>2</sub>-induced stomatal regulation was initially found in research that showed that silencing of MPK4 in tobacco plants resulted in impaired | Protein name | Locus ID | Protein function | Phenotype in response to [CO <sub>2</sub> ] change | Reference | |----------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------| | Protein kinases | | | | | | HT1 (HIGH LEAF TEMPERATURE 1) | AT1G62400 | Protein kinase | Impaired stomatal opening response, leaf temperature elevated | [11] | | NtMPK4 (MITOGEN-ACTIVATED PROTEIN<br>KINASE 4) | LOC107794128 | Mitogen-activated protein kinase | Impaired stomatal closure | [10] | | OST1 (OPEN STOMATA 1) | AT4G33950 | SnRK2 kinase | Impaired stomatal closure, lower leaf temperature | [14] | | MPK12 (MITOGEN-ACTIVATED PROTEIN<br>KINASE 12) | AT2G46070 | Mitogen-activated protein kinase | Altered stomatal response kinetics | [8] | | CBC1 (CONVERGENCE OF BLUE LIGHT AND $\mathrm{CO}_2$ 1) | AT3G01490 | Protein kinase<br>superfamily protein | Altered stomatal response<br>to CO <sub>2</sub> (cbc1 cbc2 double<br>mutant exhibits impaired<br>stomatal opening response) | [12] | | CBC2 (CONVERGENCE OF BLUE LIGHT AND $\mathrm{CO}_2$ 2) | AT5G50000 | Protein kinase<br>superfamily protein | Altered stomatal response<br>to CO <sub>2</sub> (cbc1 cbc2 double<br>mutant exhibits impaired<br>stomatal opening response) | [12] | | KIN7 (leucine-rich repeat protein KINase<br>family protein 7) | AT3G02880 | Leucine-rich repeat<br>protein kinase<br>family protein | Impaired stomatal closure | [36] | | GHR1 (GUARD CELL HYDROGEN<br>PEROXIDE-RESISTANT 1) | AT4G20940 | Transmembrane receptor-like protein | Altered stomatal response kinetics | [7,15] | | Protein phosphatases | | | | | | ABI1 (ABA INSENSITIVE 1) | AT4G26080 | Protein phosphatase 2C | Conditionally impaired stomatal CO <sub>2</sub> response; impaired abscisic acid response | [37] | | ABI2 (ABA INSENSITIVE 2) | AT5G57050 | Protein phosphatase 2C | Conditionally impaired stomatal CO <sub>2</sub> response; impaired abscisic acid response | [37] | | Transporter and channels | | | | | | SLAC1 (SLOW ANION CHANNEL 1) | AT1G12480 | Anion channel | Impaired stomatal response, cool leaf temperature | [16,17] | | QUAC1 (QUICK-ACTIVATING ANION<br>CHANNEL 1)/ALMT12 (ALUMINUM-<br>ACTIVATED MALATED TRANSPORTER 12) | AT4G17970 | Aluminum-activated, malate transporter | Altered stomatal response kinetics | [18,19] | | RHC1 (RESISTANT TO HIGH CO2) | AT4G22790 | MATE-type transporter | Impaired stomatal response | [20] | | Atabcb14 (ATP-BINDING CASSETTE B 14) | AT1G28010 | ABC transporter | Altered stomatal response kinetics | [29] | | TPK1 (TWO PORE K CHANNEL 1) | AT5G55630 | Two-pore potassium channel | Impaired stomatal closure | [36] | | AtPIP2;1 (PLASMA MEMBERANE INTRINSIC<br>PROTEIN 2;1) | AT3G53420 | Aquaporin | βCA4 interactor, <i>in vitro</i> reconstitution of CO <sub>2</sub> regulation of SLAC1 | [24] | | Enzymes and other protein functions | | | | | | HT2 (HIGH LEAF TEMPERATURE 2)/<br>PATROL 1 | AT5G06970 | Munc13-like protein<br>involved in mediating<br>H+-ATPase translocation | Impaired stomatal opening response, leaf temperature elevated | [34] | | BIG | AT3G02260 | Calossin-like protein required for polar auxin transport | Cool leaf, impaired stomatal closure and altered CO <sub>2</sub> regulation of stomatal density | [35] | (Continued on next page) | Protein name | Locus ID | Protein function | Phenotype in response to [CO <sub>2</sub> ] change | Reference | |----------------------------------------------|---------------|--------------------|--------------------------------------------------------------------------------------------------|-----------| | βCA1 (β-CARBONIC ANHYDRASE 1) | AT3G01500 | Carbonic anhydrase | Slow stomatal CO <sub>2</sub> response<br>and higher stomatal density<br>(ca1 ca4 double mutant) | [2,21] | | βCA4 (β-CARBONIC ANHYDRASE 4) | AT1G70410 | Carbonic anhydrase | Slow stomatal CO <sub>2</sub> response<br>and higher stomatal density<br>(ca1 ca4 double mutant) | [2,21] | | <sup>a</sup> OsβCA1 (β-CARBONIC ANHYDRASE 1) | LOC_Os1g45274 | Carbonic anhydrase | Slow stomatal CO <sub>2</sub> response in rice | [22] | | <sup>a</sup> ZmCA1 (CARBONIC ANHYDRASE 1) | GRMZM2g121878 | Carbonic anhydrase | Slow stomatal CO <sub>2</sub> response (ca1 ca2 double mutant) in maize | [23] | | <sup>a</sup> ZmCA2 (CARBONIC ANHYDRASE 2) | GRMZM2g348512 | Carbonic anhydrase | Slow stomatal CO <sub>2</sub> response<br>(ca1 ca2 double mutant)<br>in maize | [23] | | GCA2 (GROWTH CONTROL BY ABSCISIC<br>ACID 2) | Not available | Not available | Impaired stomatal closure | [38] | <sup>a</sup>Nt, Nicotiana tabacum; Os, Oryza sativa; Zm, Zea mays. All others are from Arabidopsis thaliana. $CO_2$ -induced stomatal closure but did not alter the stomatal closing response to abscisic acid, another regulator of stomatal function [10]. *Arabidopsis* plant lines lacking the *MPK12* gene displayed increased transpiration and partial defects in stomatal movements in response to high and low $[CO_2]$ shifts [8]. However, light-induced stomatal opening — as well as stomatal closure induced by reduced air humidity and ozone — were intact in *mpk12* mutant plants [7,8], demonstrating the specificity of MPK12 in the $[CO_2]$ response. When MPK4 was silenced in guard cells of homozygous MPK12-deficient plants, the double mutant lines abolished stomatal closure and opening in response to $[CO_2]$ shifts [9], but again retained an intact abscisic-acid-induced stomatal closure. This finding suggested that MPK4 and MPK12 function synergistically to regulate $CO_2$ -induced stomatal movements [9]. The RAF-like MAP kinase kinase kinase HT1 negatively regulates high [CO $_2$ ]-induced stomatal closing [11,34]. The activity of HT1 is down-regulated by MPK12 *in vitro* [7,8]. In turn, the HT1 protein kinase down-regulates SLAC1 activity in *Xenopus* oocytes [7,20] and HT1 is a negative regulator of CO $_2$ activation of S-type anion channels in guard cells [14,20]. Presently, phosphorylation sites in SLAC1 that shut down channel activity remain unknown. High [CO $_2$ ]-induced down-regulation of HT1 may directly or indirectly enable S-type anion channel activation (Figure 2), which initiates ion efflux from guard cells and triggers stomatal closure in response to elevated [CO $_2$ ]. Recently, the CBC1 (CONVERGENCE OF BLUE LIGHT AND CO<sub>2</sub> 1) and CBC2 protein kinases were identified and shown to interact with HT1, which phosphorylates CBC1 and CBC2 *in vitro* [12]. The *cbc1/cbc2* double mutant shows constitutively closed stomata that do not respond to [CO<sub>2</sub>] changes [12]. This is reminiscent of the [CO<sub>2</sub>] phenotype of the strong recessive *ht1-2* allele [11]. Indeed, the *cbc1/cbc2/ht1-9* triple mutant shows the same stomatal phenotype as *ht1-9* and *cbc1/cbc2* mutants. Altogether, these results indicate that CBC1, CBC2 and HT1 function in the same pathway [12] (Figure 2). However, whether CBC1 and CBC2 directly suppress SLAC1 by phosphorylation or inhibit protein kinases that activate SLAC1, such as OST1, remains unknown (Figure 2). A new signaling component implicated in high $[CO_2]$ -mediated stomatal closing and stomatal development was recently uncovered through an infrared thermal-imaging screen [35]. A single point mutation in the BIG gene triggered a partially diminished response in elevated $[CO_2]$ -induced stomatal closure and activation of S-type anion channels. BIG is also required for the reduction of stomatal density in response to elevated $[CO_2]$ [35]. Interestingly, BIG is not involved in the inhibition of stomatal opening in response to low $[CO_2]$ . These data suggest a role for BIG as a crucial signaling component that separates the low $[CO_2]$ -induced stomatal opening from stomatal closure promoted by high $[CO_2]$ [35]. Identification of possible mechanisms by which BIG regulates $CO_2$ -induced stomatal closure will be of interest in further research (Figure 2). Stomatal closing requires $K^+$ efflux from guard-cell vacuoles via vacuolar $K^+$ channels encoded by TPK genes. A recent study identified a protein kinase, KIN7, that functions in activation of the guard-cell vacuolar $K^+$ channel encoded by TPK1. kin7 mutant alleles are disrupted in abscisic-acid- and $CO_2$ -induced stomatal closing [36], suggesting that $CO_2$ - and abscisic-acid-signaling pathways share this mechanism. The trafficking of KIN7 from the plasma membrane to the tonoplast (vacuolar) membrane was reported [36], suggesting a mechanism for $CO_2$ regulation of vacuolar membrane ion fluxes during stomatal movements. Although several critical components of stomatal $CO_2$ signaling have been identified (Table 1 and Figure 2), their interactions and targets remain largely unknown. Furthermore, proteins that act as direct receptors to sense $CO_2$ and/or $HCO_3^-$ and trigger the underlying phosphorylation events required for $CO_2$ -induced stomatal movements in guard cells remain unknown. Thus, elucidation of the exact mechanisms and sequence of events that mediate $CO_2$ sensing in regulation of stomatal movements is an important unanswered question. CO<sub>2</sub> Signaling Pathway Interactions with Other Stimuli Stomatal aperture is regulated by several environmental stimuli, including light, drought, $CO_2$ , relative humidity, and pathogens [3,29]. Understanding how plants compile and coordinate this multitude of stimuli into proper guard-cell turgor pressure, and thus stomatal aperture, is crucial and is less well understood. Here we discuss external and internal stimuli that, together with $CO_2$ , control stomatal movements. ### Abscisic Acid As mentioned in the previous section, the phytohormone abscisic acid triggers stomatal closing. Interactions between abscisic-acid- and CO<sub>2</sub>-mediated signal transduction in guard cells have been observed for many years but have not been fully elucidated. Classic studies reported, over 40 years ago, that stomatal closing could be induced by abscisic acid only in the presence of ambient to high [CO<sub>2</sub>] in *Xanthium strumarium* L. The dominant abscisic-acid-insensitive mutants, *abi1-1* and *abi2-1*, conditionally impair CO<sub>2</sub>-induced stomatal closing [37]. ## Figure 2. Simplified model for CO<sub>2</sub> signal transduction in regulation of stomatal movements. CO2 enters guard cells through aquaporins (AtPIPs, blue ovals). The PIP2;1 aquaporin interacts with the carbonic anhydrase BCA4, and the activity of the carbonic anhydrases leads to accelerated bicarbonate (HCO<sub>3</sub><sup>-</sup>) formation. HCO<sub>3</sub><sup>-</sup> and/or CO<sub>2</sub> act as signal molecules. Downstream protein kinases (MPKs, HT1, OST1 and CBCs), intracellular calcium ions, ion channels (SLAC1, AtALMT12/QUAC1), ion transporters (AtABCB14) and the membrane protein GHR1 are required for CO2 control of stomatal closure. Convergence with abscisic acid (ABA) and iasmonate (JA) signaling is also indicated. Although key genetic components have been recently identified, many of the cellular signaling, biochemical, and interaction mechanisms remain to be elucidated. Connections represent positive regulation (green arrows) and negative regulation (red blocks) of high [CO<sub>2</sub>]-induced stomatal closing. Regulation pathways are predicted to be direct (lines) or are unknown and remain to be further investigated (dashed lines). Moreover, abscisic-acid and $CO_2$ responses share several genetic components, including *SLAC1*, *OST1*, *GCA2*, *AtALMT12/QUAC1* and potassium channels [14,16–19,38]. Of note, elevated [ $CO_2$ ] and abscisic acid induce increases in guard-cell cytosolic free $Ca^{2+}$ [39], and $Ca^{2+}$ contributes to the stomatal $CO_2$ and abscisic-acid responses implicating a role for $Ca^{2+}$ in linking these two pathways in guard cells [14,38,39] (Figure 2). In this context, the hypothesis that high-[CO<sub>2</sub>]-induced stomatal closure requires abscisic-acid perception and signaling in guard cells has been investigated [40]. When mutants of the PYR/RCAR abscisic-acid receptors were tested in CO<sub>2</sub> responses, a correla- tion was observed between the lack of abscisic-acid receptors and the intensity of the CO<sub>2</sub>-induced stomatal closure. A quadruple mutant deficient in the abscisic-acid receptors PYR1, PYL1, PYL2 and PYL4 showed a delayed but otherwise full CO<sub>2</sub>-induced stomatal closing [14]. In contrast, a more recent study showed that the pyr1/pyl1/pyl4 triple mutant and the pyr1/ pyl1/pyl2/pyl4 quadruple mutant abolished high-[CO<sub>2</sub>]-induced stomatal closure in stomatal-aperture assays [40]. Furthermore, mutants impaired in abscisic-acid biosynthesis were tested using the same assays and were reported to show similar abolishment of responses to [CO<sub>2</sub>] in stomatal-aperture assays [40]. These data could be explained in two ways [40]: first, abscisic acid may increase the plant's sensitivity to CO<sub>2</sub>. Alternatively, or in addition, high [CO<sub>2</sub>] might trigger a fast accumulation of abscisic acid. On the other hand, the abscisic-acid biosynthesis mutants aba1 and aba3 did not abolish CO2-induced stomatal closure in intact plant gas-exchange measurements [41]. Recent research investigating models by which CO<sub>2</sub> elevation interfaces ## Current Biology Minireview with abscisic-acid signal transduction in guard cells, including use of a real-time ABA FRET reporter, points to a new model, in which $CO_2$ -mediated signal transduction merges with abscisic-acid signal transduction downstream of the OST1 protein kinase and with parallel basal (background) abscisic-acid signaling and OST1 kinase activity being required for a robust stomatal $CO_2$ response [42]. ### Methyl Jasmonate Jasmonates act as plant hormones and have essential functions in regulating plant growth, development, and defense against pathogens and abiotic stresses. SCFCOI1 acts as the jasmonate receptor and targets the JASMONATE ZIM-DOMAIN proteins for degradation and ubiquitination, leading to activation of diverse jasmonate-dependent responses. Recent metabolomic analyses of guard cells showed that the concentrations of methyl jasmonate and jasmonoyl-L-isoleucine increased in response to elevated [CO2] but remained unaltered when plants were grown under low [CO<sub>2</sub>] conditions [28]. In addition, epidermalstrip assays found that stomatal apertures of guard cells in epidermal peels did not respond to high [CO<sub>2</sub>] in the jasmonoyl-L-isoleucine synthesis mutant, jasmonate resistant 1 (jar1) - or in the signaling mutants coronatine-insensitive1 (coi1) and jasmonate insensitive 1 (jin1, also named myc2) as compared to wild-type plants [28]. Jasmonate was proposed to act downstream of carbonic anhydrases in the CO<sub>2</sub>-signaling transduction pathway since jasmonoyl-L-isoleucine metabolites did not change significantly under elevated [CO<sub>2</sub>] in the ca1/ca4 double mutant [28]. ### Liaht In addition to low [CO<sub>2</sub>], stomatal opening is also induced by both red and blue light. Red-light-induced stomatal opening is likely mediated in large part by a reduction of intercellular [CO<sub>2</sub>] via photosynthesis in Arabidopsis [43]. Blue light-induced stomatal opening is mediated via a different signaling pathway, and is dependent on inhibition of the plasma-membrane anion channels [44] and activation of plasma-membrane proton pumps [12,29], among other targets. A recent study identified a key molecular basis for blue-light and CO2 signal transduction convergence. The CBC1 protein kinase is rapidly phosphorylated in response to blue light in Arabidopsis guard-cell protoplasts [12]. Interestingly, double-mutant plants in CBC1 and its close homolog CBC2 showed not only impaired blue-light-induced stomatal opening but also a lack of stomatal opening in response to low [CO<sub>2</sub>] [12]. CBC1 and CBC2 are directly phosphorylated by the blue-light receptor PHOT1. Moreover, as mentioned earlier CBC1 and CBC2 are also phosphorylated by the HT1 protein kinase that is required for low-[CO<sub>2</sub>]-induced stomatal opening (Figure 2). Thus, CBC1 and CBC2 function as a key recognized convergence point of the blue-light and CO2 signal transduction pathways in regulation of stomatal movements. Interestingly, cbc1cbc2 mutant plants show abscisic-acidinduced stomatal closure [12], suggesting that CBC1 and CBC2 do not directly function in abscisic-acid signal transduction. The target proteins that are phosphorylated by CBC1 and CBC2 remain presently unknown. ### **Modeling Stomatal Movement Responses** A few studies have modeled stomatal movements in response to abscisic acid by examining signaling networks that incorporate the many known components and parameters [45–47]. These studies are able to model the response of abscisic-acid-induced stomatal closure and can make experimentally testable predictions. In addition, kinetic models that incorporate many components and ion channel/transporter regulation and activity parameters have been developed to model the kinetics of stomatal conductance as a function of abscisic acid and humidity [48,49]. It would be worthwhile to expand these modeling approaches to $[{\rm CO_2}]$ -mediated signal transduction. Furthermore, it would be interesting to determine whether recent efforts in model reduction that systematically reduce the number of parameters and components [50] can be applied towards predicting properties or functions of additional (currently undiscovered) mechanisms in ${\rm CO_2}$ signal transduction. ### **Conclusions** In recent years, several essential genes and mechanisms that function in guard cells for [CO2]-mediated control of stomatal movements have been identified (Table 1 and Figure 2). However, knowledge of how they interact and are integrated into a signaling network remains fragmented. Also, the intracellular CO2 and HCO<sub>3</sub> sensors remain unknown, and the mechanisms by which intracellular CO<sub>2</sub> and HCO<sub>3</sub><sup>-</sup> function as second messengers in guard cells remain unclear. Further research aimed at identification of CO2 and HCO3 sensors and the precise interactions among the newly recognized components in the CO2-signaltransduction network could involve in-depth biochemical, genetic molecular, cell biological and natural variation analyses, and systematic probing of CO<sub>2</sub>-dependent transcriptomic and proteomic resources and systems-biological mining of data sets. Moreover, genetic mutants and leaf cell-wall metabolomic analyses are required to dissect the mechanisms by which an unknown diffusible signal from mesophyll cells regulates CO2 control of stomatal conductance. A fundamental understanding of how plants control stomatal movements in response to both daily [CO<sub>2</sub>] changes inside leaves and the continuing atmospheric rise in [CO2] will be important for adapting crop plants towards maximizing yield and water-use efficiency in an elevated-[CO<sub>2</sub>] world. ### **ACKNOWLEDGMENTS** The authors apologize to those colleagues whose relevant work could not be cited due to space limitations. This work was funded by a grant from the National Science Foundation (MCB-1616236) to J.I.S and W.J.R. Y.T. was supported by a Postdoctoral Fellowship for Research Abroad from the Japan Society for the Promotion of Science. S.S. was supported by a Deutsche Forschungsgemeinschaft fellowship (SCHU 3186/1-1:1). P.O.C. was supported by a CNPq scholarship from Brazil. G.D. was supported by a EMBO long-term postdoctoral fellowship (ALTF334-2018). T.A. was supported by the Israel Ministry of Aliyah and Integration. Research in H.K.'s group was supported by the Estonian Ministry of Science and Education (IUT2-21) and the European Regional Development Fund (Centre of Excellence in Molecular Cell Engineering CEMCE). ### **REFERENCES** - Chater, C.C.C., Caine, R.S., Fleming, A.J., and Gray, J.E. (2017). Origins and evolution of stomatal development. Plant Physiol. 174, 624–638. - Engineer, C.B., Hashimoto-Sugimoto, M., Negi, J., Israelsson-Nordstrom, M., Azoulay-Shemer, T., Rappel, W.J., Iba, K., and Schroeder, J.I. (2016). CO<sub>2</sub> sensing and CO<sub>2</sub> regulation of stomatal conductance: advances and open questions. Trends Plant Sci. 21, 16–30. - 3. Hetherington, A.M., and Woodward, F.I. (2003). The role of stomata in sensing and driving environmental change. Nature 424, 901–908. - Gray, S.B., Dermody, O., Klein, S.P., Locke, A.M., McGrath, J.M., Paul, R.E., Rosenthal, D.M., Ruiz-Vera, U.M., Siebers, M.H., Strellner, R., et al. (2016). Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132. - Ruiz-Vera, U.M., Siebers, M.H., Drag, D.W., Ort, D.R., and Bernacchi, C.J. (2015). Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO<sub>2</sub>]. Glob. Chang. Biol. 21, 4237–4249. - Mott, K.A., Sibbernsen, E.D., and Shope, J.C. (2008). The role of the mesophyll in stomatal responses to light and CO<sub>2</sub>. Plant Cell Environ. 31, 1299– 1306. - Horak, H., Sierla, M., Toldsepp, K., Wang, C., Wang, Y.S., Nuhkat, M., Valk, E., Pechter, P., Merilo, E., Salojarvi, J., et al. (2016). A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO<sub>2</sub>-induced stomatal closure. Plant Cell 28, 2493–2509. - Jakobson, L., Vaahtera, L., Toldsepp, K., Nuhkat, M., Wang, C., Wang, Y.S., Horak, H., Valk, E., Pechter, P., Sindarovska, Y., et al. (2016). Natural variation in *Arabidopsis* Cvi-0 accession reveals an important role of MPK12 in guard cell CO<sub>2</sub> signaling. PLoS Biol. 14, e2000322. - Toldsepp, K., Zhang, J., Takahashi, Y., Sindarovska, Y., Horak, H., Ceciliato, P.H.O., Koolmeister, K., Wang, Y.S., Vaahtera, L., Jakobson, L., et al. (2018). Mitogen-activated protein kinases MPK4 and MPK12 are key components mediating CO<sub>2</sub>-induced stomatal movements. Plant J. [Epub ahead of print]. https://doi.org/10.1111/tpj.14087. - Marten, H., Hyun, T., Gomi, K., Seo, S., Hedrich, R., and Roelfsema, M.R. (2008). Silencing of NtMPK4 impairs CO<sub>2</sub>-induced stomatal closure, activation of anion channels and cytosolic Ca<sup>2+</sup> signals in *Nicotiana tabacum* guard cells. Plant J. 55, 698–708. - Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I., and Iba, K. (2006). *Arabidopsis* HT1 kinase controls stomatal movements in response to CO<sub>2</sub>. Nat. Cell Biol. 8, 391–397. - Hiyama, A., Takemiya, A., Munemasa, S., Okuma, E., Sugiyama, N., Tada, Y., Murata, Y., and Shimazaki, K.I. (2017). Blue light and CO<sub>2</sub> signals converge to regulate light-induced stomatal opening. Nat. Commun. 8, 1284. - 13. Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., Ache, P., Matschi, S., Liese, A., Al-Rasheid, K.A.S., et al. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl. Acad. Sci. USA 106, 21425–21430. - Xue, S., Hu, H., Ries, A., Merilo, E., Kollist, H., and Schroeder, J.I. (2011). Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO<sub>2</sub> signal transduction in guard cell. EMBO J. 30. 1645–1658. - Hua, D.P., Wang, C., He, J.N., Liao, H., Duan, Y., Zhu, Z.Q., Guo, Y., Chen, Z.Z., and Gong, Z.Z. (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in *Arabidopsis*. Plant Cell 24, 2546–2561. - Negi, J., Matsuda, O., Nagasawa, T., Oba, Y., Takahashi, H., Kawai-Yamada, M., Uchimiya, H., Hashimoto, M., and Iba, K. (2008). CO<sub>2</sub> regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483–486. - Vahisalu, T., Kollist, H., Wang, Y.F., Nishimura, N., Chan, W.Y., Valerio, G., Lamminmaki, A., Brosche, M., Moldau, H., Desikan, R., et al. (2008). SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452, 487–491. - Meyer, S., Mumm, P., Imes, D., Endler, A., Weder, B., Al-Rasheid, K.A.S., Geiger, D., Marten, I., Martinoia, E., and Hedrich, R. (2010). AtALMT12 represents an R-type anion channel required for stomatal movement in *Arabidopsis* guard cells. Plant J. 63, 1054–1062. - Sasaki, T., Mori, I.C., Furuichi, T., Munemasa, S., Toyooka, K., Matsuoka, K., Murata, Y., and Yamamoto, Y. (2010). Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol. 51, 354–365. - Tian, W., Hou, C.C., Ren, Z.J., Pan, Y.J., Jia, J.J., Zhang, H.W., Bai, F.L., Zhang, P., Zhu, H.F., He, Y.K., et al. (2015). A molecular pathway for CO<sub>2</sub> response in *Arabidopsis* guard cells. Nat. Commun. 6, 6057. - Hu, H., Boisson-Dernier, A., Israelsson-Nordstrom, M., Bohmer, M., Xue, S., Ries, A., Godoski, J., Kuhn, J.M., and Schroeder, J.I. (2010). Carbonic anhydrases are upstream regulators of CO<sub>2</sub>-controlled stomatal movements in guard cells. Nat. Cell Biol. 12, 87–93. - 22. Chen, T., Wu, H., Wu, J., Fan, X., Li, X., and Lin, Y. (2017). Absence of OsbetaCA1 causes a CO<sub>2</sub> deficit and affects leaf photosynthesis and the stomatal response to CO<sub>2</sub> in rice. Plant J. 90, 344–357. - Kolbe, A.R., Brutnell, T.P., Cousins, A.B., and Studer, A. (2018). Carbonic anhydrase mutants in *Zea mays* have altered stomatal responses to environmental signals. Plant Physiol. 177, 980–989. - 24. Wang, C., Hu, H.H., Qin, X., Zeise, B., Xu, D.Y., Rappel, W.J., Boron, W.F., and Schroeder, J.I. (2016). Reconstitution of CO<sub>2</sub> regulation of SLAC1 anion channel and function of CO<sub>2</sub>-permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 interactor. Plant Cell 28, 568–582. - Yamamoto, Y., Negi, J., Wang, C., Isogai, Y., Schroeder, J.I., and Iba, K. (2016). The transmembrane region of guard cell SLAC1 channels perceives CO₂ signals via an ABA-independent pathway in *Arabidopsis*. Plant Cell 28, 557–567. - Zhang, J., Wang, N., Miao, Y., Hauser, F., McCammon, J.A., Rappel, W.J., and Schroeder, J.I. (2018). Identification of SLAC1 anion channel residues required for CO<sub>2</sub>/bicarbonate sensing and regulation of stomatal movements. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas. 1807624115. - Fujita, T., Noguchi, K., and Terashima, I. (2013). Apoplastic mesophyll signals induce rapid stomatal responses to CO<sub>2</sub> in *Commelina communis*. New Phytol. 199, 395–406. - 28. Geng, S.S., Misra, B.B., de Armas, E., Huhman, D.V., Alborn, H.T., Sumner, L.W., and Chen, S.X. (2016). Jasmonate-mediated stomatal closure under elevated CO<sub>2</sub> revealed by time-resolved metabolomics. Plant J. 88, 947–962. - Murata, Y., Mori, I.C., and Munemasa, S. (2015). Diverse stomatal signaling and the signal integration mechanisms. Annu. Rev. Plant Biol. 66, 369–392. - Wang, L., Wan, R.J., Shi, Y.H., and Xue, S.W. (2016). Hydrogen sulfide activates S-type anion channel via OST1 and Ca<sup>2+</sup> modules. Mol. Plant 9, 489–491. - Lawson, T., Simkin, A.J., Kelly, G., and Granot, D. (2014). Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol. 203, 1064–1081. - Hedrich, R., Marten, I., Lohse, G., Dietrich, P., Winter, H., Lohaus, G., and Heldt, H.W. (1994). Malate-sensitive anion channels enable guardcells to sense changes in the ambient CO<sub>2</sub> concentration. Plant J. 6, 741–748. - 33. Roelfsema, M.R., Konrad, K.R., Marten, H., Psaras, G.K., Hartung, W., and Hedrich, R. (2006). Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO<sub>2</sub> and abscisic acid. Plant Cell Environ. 29, 1595–1605. - 34. Hashimoto-Sugimoto, M., Negi, J., Monda, K., Higaki, T., Isogai, Y., Nakano, T., Hasezawa, S., and Iba, K. (2016). Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO<sub>2</sub> in *Arabidopsis*. J. Exp. Bot. 67, 3251–3261. - 35. He, J., Zhang, R.X., Peng, K., Tagliavia, C., Li, S., Xue, S., Liu, A., Hu, H., Zhang, J., Hubbard, K.E., et al. (2018). The BIG protein distinguishes the process of CO<sub>2</sub>-induced stomatal closure from the inhibition of stomatal opening by CO<sub>2</sub>. New Phytol. 218, 232–241. - Isner, J.C., Begum, A., Nuehse, T., Hetherington, A.M., and Maathuis, F.J.M. (2018). KIN7 kinase regulates the vacuolar TPK1 K<sup>+</sup> channel during stomatal closure. Curr. Biol. 28, 466–472. - Webb, A.A., and Hetherington, A.M. (1997). Convergence of the abscisic acid, CO<sub>2</sub>, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiol. 114, 1557–1560. ## Current Biology Minireview - 38. Young, J.J., Mehta, S., Israelsson, M., Godoski, J., Grill, E., and Schroeder, J.I. (2006). CO<sub>2</sub> signaling in guard cells: Calcium sensitivity response modulation, a Ca<sup>2+</sup>-independent phase, and CO<sub>2</sub> insensitivity of the gca2 mutant. Proc. Natl. Acad. Sci. USA 103, 7506–7511. - Webb, A.A.R., McAinsh, M.R., Mansfield, T.A., and Hetherington, A.M. (1996). Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J. 9, 297–304. - Chater, C., Peng, K., Movahedi, M., Dunn, J.A., Walker, H.J., Liang, Y.K., McLachlan, D.H., Casson, S., Isner, J.C., Wilson, I., et al. (2015). Elevated CO<sub>2</sub>-induced responses in stomata require ABA and ABA Signaling. Curr. Biol. 25, 2709–2716. - Merilo, E., Laanemets, K., Hu, H.H., Xue, S.W., Jakobson, L., Tulva, I., Gonzalez-Guzman, M., Rodriguez, P.L., Schroeder, J.I., Brosche, M., et al. (2013). PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO<sub>2</sub>-induced stomatal regulation. Plant Physiol. 162, 1652–1668. - Hsu, P.K., Takahashi, Y., Munemasa, S., Merilo, E., Laanemets, K., Waadt, R., Pater, D., Kollist, H., and Schroeder, J.I. (2018). Abscisic acid-independent stomatal CO<sub>2</sub> signal transduction pathway and convergence of CO<sub>2</sub> and ABA signaling downstream of OST1 kinase. Proc. Natl. Acad. Sci. USA 115, E9971–E9980. - Roelfsema, M.R.G., Hanstein, S., Felle, H.H., and Hedrich, R. (2002). CO<sub>2</sub> provides an intermediate link in the red light response of guard cells. Plant J. 32, 65–75. - Marten, H., Hedrich, R., and Roelfsema, M.R.G. (2007). Blue light inhibits guard cell plasma membrane anion channels in a phototropin-dependent manner. Plant J. 50, 29–39. - Hills, A., Chen, Z.H., Amtmann, A., Blatt, M.R., and Lew, V.L. (2012). OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol. 159, 1026–1042. - Nazareno, A.L., and Hernandez, B.S. (2017). A mathematical model of the interaction of abscisic acid, ethylene and methyl jasmonate on stomatal closure in plants. PLoS One 12, e0171065. - Li, S., Assmann, S.M., and Albert, R. (2006). Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4, 1732–1748. - Albert, R., Acharya, B.R., Jeon, B.W., Zanudo, J.G.T., Zhu, M.M., Osman, K., and Assmann, S.M. (2017). A new discrete dynamic model of ABAinduced stomatal closure predicts key feedback loops. PLoS Biol. 15, e2003451. - Wang, Y.Z., Hills, A., Vialet-Chabrand, S., Papanatsiou, M., Griffiths, H., Rogers, S., Lawson, T., Lew, V.L., and Blatt, M.R. (2017). Unexpected connections between humidity and ion transport discovered using a model to bridge quard cell-to-leaf scales. Plant Cell 29, 2921–2939. - Lombardo, D.M., and Rappel, W.J. (2017). Systematic reduction of a detailed atrial myocyte model. Chaos 27, 093914.